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ABSTRACT 
 
 
 
Soldiers rely predominantly on vision to detect targets, yet other senses 

may cue their sense of sight.  Contrarily, most army combat simulations employ 

only visual cues.  The focus of this thesis is to enhance combat simulations by 

providing a method by which computer-generated entities can detect and locate 

objects via a phenomenon known as "sound localization."  The Auditory 

Detection Program is used to represent a human's hearing, and data from a 

sound localization experiment are analyzed to determine how to best represent 

the event in which an individual hears a sound and then estimates the location of 

the sound's source.  The resulting algorithms are coded into the Army's combat 

simulation, COMBATXXI, and the “face-validation” method is used to determine if 

the algorithms enhance the realism of the simulation. The data analysis consists 

of Shapiro-Wilks Tests for Normaility, Friedman’s Tests for Randomized Block 

Experiment, and Wilcoxon Rank-Sum Tests using the Bonferroni Correction. 

Implementing this model in COMBATXXI improves the simulation by making it 

more realistic.  
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EXECUTIVE SUMMARY 
 
 
 
To represent the individual Soldier more accurately in computer 

simulations, the U.S. Army is improving current computer combat models and 

developing new models.  This modeling and simulation (M&S) initiative is 

designed to facilitate the Army’s transition to the Future Force by allowing 

leaders to evaluate different force organizations and equipment schemes.   To 

assist this effort, the Training and Doctrine Command Analysis Center (TRAC) – 

Monterey is currently implementing the Soldier Representation in M&S Master 

Plan, which emphasizes modeling "the actions, behaviors, and information 

available to the Soldier." [Ref 21]  This thesis directly supports the work done by 

TRAC – Monterey.   

All current Army combat models use vision as a Soldier's primary means 

of detection.  In fact, the detection event causes the computer-generated entities 

to react to other entities or objects it encounters.  Few, if any, of the Army's 

combat models use any of the other four human senses—hearing, touch, smell, 

and taste, for detection and reaction.  In reality, vision is the dominant sense a 

Soldier employs to detect objects; however, a Soldier often uses other senses as 

a cue to react.  The focus of this thesis is to enhance combat simulations by 

providing a method by which computer-generated entities can use their sense of 

hearing to detect and to locate objects through a phenomenon known as "sound 

localization."  More specifically, this thesis provides combat modelers with a 

program that robustly models sound propagation and auditory detection, a 

program that extracts a sound signature for any sound recorded in a WAV file 

format, and algorithms that replicate a human's sound-localization abilities.  

The Auditory Detection Program was selected to model sound 

propagation and to represent a human's auditory detection capability.  The 

Auditory Hazard Assessment Algorithm was chosen to extract signatures from 

sound recordings for use in combat simulations.  Laboratory data from a sound-
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localization experiment were analyzed to determine how to represent the 

phenomenon in which an individual hears a sound and then estimates the 

location of the sound's source.  Data from the Auditory Detection Program, 

Auditory Hazard Assessment Algorithm, and sound-localization algorithms were 

then combined and coded into the Army's combat simulation, COMBATXXI.  As a 

result, COMBATXXI now provides users with the option to model selected sounds 

and to create rules that describe how entities react to those sounds.  This 

enhancement has a potential impact on a computer-generated combatant's 

ability to acquire targets, survive attacks, gather intelligence, and communicate 

with other entities.  The added capability may also allow analysts to examine the 

use of acoustic sensors and non-lethal acoustic weapons on the battlefield.         

One hundred trials were run in COMBATXXI with the new algorithms and 

scenarios specifically developed to test the new model.  The S-PLUS version 6.2 

was used to analyze the data. [Ref 11]  The data analysis consisted of Shapiro-

Wilks Tests for Normaility, Friedman’s Tests for Randomized Block Experiment, 

and Wilcoxon Rank-Sum Tests using the Bonferroni Correction.  The analysis 

demonstrated that COMBATXXI executed with the addition of auditory-detection 

capabilities and sound-localization algorithms result in statistically different 

outcomes than COMBATXXI without the additions.      

The “face validation” method was selected to determine whether this 

model met the requirement for validity. Implementing this model in COMBATXXI 

made the computer-generated entities in this simulation act in a more realistic 

manner.  
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I. INTRODUCTION  

In accordance with guidance from the Chief of Staff of the Army (CSA), 

Army agencies are "implementing the concept of 'every Soldier is a sensor' 

(ES2)." [Ref 12] To help analyze this concept, the modeling and simulation 

community must represent a human's sensory capability in combat simulations 

more realistically.  Currently, most combat simulations use only one of the 

senses, namely "sight,” when modeling humans.   

This thesis helps the U.S. Army modeling and simulation community 

represent the individual Soldier more accurately in combat simulations by 

providing computer-generated entities with the ability to locate objects via sound.  

This ability is known as "sound localization."  Specifically, this thesis enhances 

combat simulations with three products:  a robust sound-propagation and 

auditory-detection program, a program that extracts the signature of any sound 

recorded in a WAV file format, and sound-localization algorithms based upon 

experiments with human subjects.  This more accurate modeling of the individual 

Soldier enables better analysis of force structures, Soldier systems, tactics, and 

other Soldier issues.   

Consider how important the senses are to a Soldier's life.  A loud noise 

can cause an immediate reaction, prompting one to assume a protective posture, 

while turning to locate the source of the sound.  An individual may feel the 

vibration of an approaching tank or thud of an artillery round seconds before 

actually hearing or seeing the object.  This provides valuable time for the Soldier 

to take cover.  A Soldier on patrol can smell the smoke of a cigarette, which 

alerts him to someone's presence, or can smell the stench of chemical weapons, 

which provokes him to don a protective mask.  The added awareness that all the 

human senses provide is very important in close-combat situations, such as in an 

urban environment.         

Even though algorithms, which can represent human hearing, have 

existed since the early 1990’s, the limitations of computers have discouraged 
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modelers from routinely using algorithms in their simulations. [D. A. Reece, 

personal communication, December 1, 2004 and Ref 17]   Moreover, the line-of-

sight calculation for a computer-generated combatant's vision has historically 

been the most computationally expensive algorithm in computer models.  Adding 

just one of the other senses places another costly burden on the simulation, 

which can be more expensive than the line-of-sight calculation. [Ref 18]  Yet with 

recent advancements in computer technology, it may be advantageous to include 

one or more additional human senses in limited situations, such as in small-scale 

engagements or in situations in which computer generated entities detect only a 

small number of events via a particular sense.                  

A. BACKGROUND  
The Training and Doctrine Command Analysis Center – White Sands 

Missile Range (TRAC-WSMR) convened the Soldier Modeling and Analysis 

Working Group (MAWG) from September 2003 to March 2004 in order to 

"develop a plan of action to guide future development and use of modeling and 

simulation (M&S) to support Soldier and small unit decision issues."  [Ref 23]  

The result of this meeting was the "Soldier Modeling and Analysis Working Group 

Evaluation Report," which identified 56 capability gaps in current combat models.     

Many of the capability gaps listed in the MAWG report may be addressed 

by more accurately modeling the sensor capabilities (senses) of computer-

generated entities. Some of the gaps that could be improved include situational 

awareness (SA), target acquisition (TA), communication, the identification of 

friend or foe (IFF), and Human Factors. More robust representation of the human 

senses in computer models may also allow the M&S community to use combat 

simulations to evaluate the CSA's concept that "every Soldier is a sensor."       

B. SCOPE 
The purpose for this thesis is to enhance combat simulations by providing 

a method by which computer-generated entities can detect and locate objects via 

a phenomenon known as "sound localization."  This purpose is achieved by 

providing three products:  a robust sound propagation and auditory detection 

program, a program that extracts the signature of any sound recorded in a WAV 
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file format, and sound-localization algorithms based upon experiments with 

human subjects.  This thesis focuses on six areas:  a study of previous work 

done with auditory cues in combat simulations and sound-localization 

experiments, examination of the auditory-detection and sound-localization 

phenomena, description and analysis of sound-localization data conducted with 

human subjects, description of the models used to add the auditory-detection 

capability, and implementation of the models into the Army's combat simulation, 

COMBATXXI. 

1.   Previous Work 
a.   Auditory Cues in Combat Simulations 
Combat simulations have used sound cuing since the early 1990s.  

Specific examples are the OneSAF and UCCATS simulations.  These 

simulations employed very simple sound-propagation and auditory-detection 

models.  This thesis provides a more robust sound-propagation and auditory-

detection program that was developed by auditory experts at the Army Research 

Laboratory.       

b.   Sound Localization 
Human sound-localization experiments have typically focused on 

replicating auditory cues with headphones to motivate a human to a desired 

response.  Conversely, this thesis uses data from these experiments to replicate 

the human's response to an auditory stimulus. 

2.   Auditory Detection and Sound Localization 
a.   Auditory Detection 
Auditory detection is a function of the physical characteristics of a 

sound and the individual characteristics of a human.  Sound characteristics 

include frequency, amplitude, temporal characteristics, and location.  Human 

characteristics consist primarily of an individual's hearing threshold.  This thesis 

provides a sound propagation and auditory detection model that accounts for 

most of these properties.   
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b. Sound Localization 
Sound localization studies show that a subject's directional 

localization error depends on the location of the sound source in relation to the 

listener's head.  Sounds originating from behind and above the subject yielded 

errors with greater standard deviations than sounds originating in front of the 

subject near the horizon.  This thesis provides algorithms that produce sound-

localization errors consistent with these studies.     

3.   Localization Data 
Raw data from a sound localization experiment, conducted by the U.S. Air 

Force Research Laboratory, were analyzed to determine how to best replicate a 

human's ability to use the sense of hearing to ascertain the correct direction of a 

sound source.  A regression tree was used to classify localization errors 

possessing similar standard deviations with respect to the azimuth and elevation 

of the sound source that produced the error.  Various normal distributions were 

then selected to represent each group of localization errors in algorithms for use 

in the in the simulation.   

4.   The Models 
The Auditory Detection Program was chosen for this work because it 

models both sound propagation and human hearing.  The Auditory Hazard 

Assessment Algorithm augments the Auditory Detection Program by providing 

sound signatures for any sound recorded in a WAV file format.  When calculating 

sound attenuation, the Auditory Detection Program accounts for the effects of 

distance between the sound source and the listener, as well as temperature, 

humidity, "type of ground surface" (grass, sand, snow, etc.), foliage, barriers, 

winds, and other atmospheric conditions.  The auditory-detection calculations 

consider a listener's hearing threshold and efficiency and the background noise 

surrounding the listener.  The combined detailed calculations of sound 

propagation and auditory detection make this a highly robust model, which can 

replicate many diverse situations.  
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5.   Implementation 
The sound-localization algorithms, Auditory Detection Program, and 

Auditory Hazard Assessment Algorithm were implemented in the Army's combat 

simulation, COMBATXXI, to determine if their combination better models the 

individual Soldier when compared against COMBATXXI alone.  Analysis of data 

produced by the combined models showed that they significantly enhanced the 

realism of the combat simulation.      
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II. PREVIOUS WORK 

A. AUDITORY CUES IN COMBAT SIMULATIONS 
Using sound to cue entities in combat simulations is not new.  In 1992, 

Neta and Mansager investigated the utility of developing sound cuing for the 

Army's Janus combat simulation.  In 1995, Reece developed a sound-cuing 

method for a Combat Generated Forces (CGF) system called "Computer 

Controlled Hostiles" (CCH) for the Team Target Engagement Simulator.  This 

sound-cuing method was later implemented in OneSAF Testbed Baseline (OTB) 

in 2001.   In 2003, Balogh created a simple sound-cuing system for use in 

COMBATXXI.  This system provided rudimentary distance estimation.   

Neta and Mansager based their work on the sound-cuing algorithm used 

in the Urban Combat Computer Assisted Training System (UCCATS).  However, 

this algorithm only used the distance between the listener and the sound source 

to determine sound attenuation and did not account for atmospheric conditions, 

terrain, foliage, etc.  The authors acknowledged the deterioration of the response 

time of Janus by implementing a sound-cuing model and recommended applying 

a simple version of the algorithm on serial computers.  If more detailed 

algorithms were used, the authors recommended using parallel computers and 

the INTEL iPSC/2 hypercube, available from the Naval Postgraduate School 

(NPS). [Ref 17]  Their report did not detail how sound localization was 

implemented in this model. 

Reece developed a sound-cuing system for use in CCH to counter the un-

realistic event in which computer-generated combatants were killed by enemy 

personnel who walked up behind them.  This algorithm allowed entities to hear 

the footsteps of an enemy approaching them from the rear so they could turn and 

defend themselves. [D.A Reece, personal correspondence, December 1, 2004]  

Reece later expanded the sound cuing to include vehicle noises and weapon fire.  

[Ref 18]  Reece's algorithm used the inverse square law to calculate sound 

propagation and did not account for atmospheric absorption, barriers, foliage, 
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etc.  The algorithm provided perfect localization information and fused visual and 

audio cues to allow an entity to form a situational awareness of threats. [D.A 

Reece, personal correspondence, December 1, 2004, Ref 18] 

Balogh created a simple sound-detection model in COMBATXXI to support 

thesis work on modeling how individual entities react to indirect fire.  The sound-

detection algorithm provided an entity with general distance, but not direction.  

Given the event that an artillery round exploded on the battlefield, an entity could 

determine whether the sound was very close, close, near, nearby, or far from its 

location.  [Ref 19]  This algorithm did not model sound propagation and did not 

provide any directional localization information. 

Research done thus far with auditory cues in combat simulations has 

primarily used a simple inverse square law to model sound propagation and has 

provided the computer-generated entities with perfect localization information.  

This thesis provides combat modelers with a robust sound propagation and 

auditory detection model and a method that represents realistic human sound-

localization abilities.   

B. SOUND LOCALIZATION 
Much of the sound-localization research has been conducted to allow 

humans to use their natural sound-localization abilities with headphones.  

Locating sound with headphones may provide combat pilots and air traffic 

controllers with greater situational awareness.  These headphones may also 

provide more realistic conditions for individuals using various training simulators.  

The general findings of these studies are found in Chapter III, Section B (page 

12). 

Sound-localization researchers have typically focused their work on 

understanding how humans localize sounds so the researchers could replicate 

auditory cues to prompt humans to a desired response.  This thesis examines 

how to model the human reaction to sound cues rather than to replicate the 

sound cues.  
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III. AUDITORY DETECTION AND SOUND LOCALIZATION 

A. AUDITORY DETECTION 
1. Factors 
The stimulus for the human auditory experience, hearing, is sound.  

Sound is "a vibration (actually compression and refraction) of the air molecules," 

which is often represented mathematically as a sine wave.  Hearing is dependent 

upon four factors of sound: amplitude, frequency, temporal characteristics, and 

location.  [Ref 25] 

a. Amplitude 
The amplitude of the sine wave is associated with intensity, or 

loudness and is measured in decibels (dB).  The point at which a sound becomes 

just audible for a person with good hearing is typically zero dB, but this depends 

upon the frequency of the sound. [Ref 20]   Figure 1 combines familiar sounds 

with the decibel scale for reference.     

 
Figure 1.   The Decibel Scale [Ref 25] 

 
b. Frequency 

 The frequency of the sine wave is interpreted as pitch and is 

measured in cycles per second, or Hertz (Hz).  Humans hear in the range from 

20 to 20,000 Hz, but are most sensitive to sounds in the 4,000 Hz range.  [Ref 

25]   
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Sounds are often described by their energy distribution across the 

frequency spectrum using octave bands as a reference.  Figure 2 provides the 

standard octave bands used by most scales.   A one-third octave band divides 

the frequency spectrum into three bands per octave.  A one-tenth octave band 

divides the frequency spectrum into ten bands per octave.  [Ref 20] 

 

 

 

 

 

 

 

 

Figure 2.   Standard Octave Bands [Ref 20] 
 

c. Temporal Characteristics 
 Temporal characteristics include the envelope and rhythm of a 

sound.  The envelope is the set of frequencies of a sound, and the rhythm is the 

pattern or flow of a sound through time.   Temporal characteristics determine the 

quality of a sound and are important for classification.  [Ref 25] 

d. Location 
 Location is the direction and distance of the sound source from the 

listener.  Location will be discussed in detail in Section B of this chapter (page 

12).   

2. Hearing Threshold 
The hearing threshold is the minimum intensity at which a sound can be 

detected for a specified frequency. [Ref 25]  The lowest curve on the graph in 

Figure 3 shows the hearing threshold in decibels across the frequency spectrum 

for a person with normal hearing.  There are personal thresholds that define the 

Center Frequency 
(Hz)

Effective Band       
(Hz)

.              31.5 22.1 to 44.2

.              63.0 44.2 to 88.4

.            125.0 88.4 to 177.0

.            250.0 177.0 to 354.0

.            500.0 354.0 to 707.0
1,000.0 707.0 to 1,414.0
2,000.0 1,414.0 to 2,828.0
4,000.0 2,828.0 to 5,657.0
8,000.0 5,657.0 to 11,314.0
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auditory detection ability for people with different levels of hearing loss.  "In 

clinical tests on human subjects, signal intensities slightly above a personal 

threshold level are always heard, while signal intensities slightly below the 

threshold are never heard, thus sound detection with changes in intensity . . . 
approximates an all or none phenomenon."  [Ref 5] 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.   Equal Loudness Contours [Ref 20] 
 
 
 
3. Masking 
Sounds can be masked by other sounds.  Masking is a very complex 

issue but can be simplified with a few assumptions.  Typically, a masking sound 

must be 6 dB louder than another sound to drown it out totally.  This rough 

estimate is based upon the assumption that the just noticeable difference (JND) 

in sound intensity for a human is approximately 1 dB and is further based on the 

fact that two sounds with similar frequencies produce a combined intensity 

slightly higher than their individual intensities.  In order to raise the combined 
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intensity of the two sounds above the JND of 1 dB, and therefore to be 

detectable, a sound must be within 6 dB of the masking sound.  [Ref 16]  

B. SOUND LOCALIZATION 
Auditory localization is the "recognition of a sounds location."  [Ref 3]   The 

auditory system is not as precise as the visual system in determining the location 

of an object: however, the auditory system has 360 degrees of range while vision 

has only about 130 degrees of range. [Refs 14,15]  People often use their sense 

of hearing to give them a general idea of a sound's location so they can then use 

their vision to obtain a more exact position.  Localization consists of three 

components: horizontal, vertical, and distance.   

1. Horizontal Localization 
Horizontal localization is primarily based upon the Interaural Time Delay 

(ITD) and Interaural Amplitude Difference (IAD).  ITD "is the elapsed time from 

the incidence of a wave front at the entrance of one ear canal until the same 

wave front reaches the other ear canal."  IAD is the difference between pressure 

intensity that a stimulus created in one ear from the pressure intensity by the 

same stimulus created in the other ear. [Ref 3]  

Most studies show that a person's best horizontal localization occurs when 

sounds originate from the front of the head near the horizon.  Performance tends 

to decrease as the sound moves from the front toward the back of the head, with 

the worst performance consistently to the rear at high or low elevations. [Refs 2, 

14]  The deterioration of performance lessens when the sound is directly to a 

subject's side. [Ref 14]  One study provides slightly different results.  This study 

shows that horizontal performance is the best directly to the sides of the head, 

slightly worse to the front, and worst at the rear. [Ref 26]  Although results of 

studies slightly differ for errors produced at the front or at the side of the head, all 

studies agree that localization is worst for sounds to the rear of a subject at high 

or low elevations.   

2. Vertical Localization 
Vertical localization uses the same cues as horizontal localization but is 

less accurate and has greater error variability. [Refs 14, 26]  Vertical localization 



13 

performance tends to be best in the front of the head near the horizon and 

decreases with lower and higher elevations and near the back of the head. [Refs 

2, 14, 26]      

3. Distance 
A person's ability to estimate distance via hearing is much less accurate 

than the ability to estimate angular direction.  People often underestimate the 

distance to faraway sources and overestimate distances of sources less than one 

meter.  Zahorick suggests that compressive power functions provide good 

approximations for an individual listener's perceived distance. [Ref 28]   

The compressive power function is of the form r' = kra, where r' is an 

estimate of perceived distance, r is the physical source distance, and k and a are 

fit parameters that account for an individual listener's ability and the 

environmental conditions.  The parameter a ranges from 0.15 to 0.70, but is on 

average 0.40.  The fitted constant value, k, has an average value slightly greater 

than one.  [Ref 28] 
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IV. LOCALIZATION DATA 

A. EXPERIMENT DESCRIPTION  
The sound localization data used for this thesis was provided by the U.S. 

Air Force Research Lab's Human Effectiveness:  Crew Systems Interface 

Division (AFRL/HEC).  [Refs 1, 4]  The following describes the experiment that 

produced the data:      

 

Figure 4.   Auditory Localization Facility (ALF)  [Ref 4] 
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The experiment was conducted in the AFRL Auditory Localization 
Facility (ALF).  [See Figure 4] The ALF is a 6.7 m x 6.7 m x 6.7 m 
anechoic chamber containing an aluminum-frame geodesic sphere, 
4.6 m in diameter, with loudspeakers located approximately at each 
of its 272 vertices.  Each of the 272 speaker locations has also 
equipped with a cluster of four independently-controllable red 
LEDs.  The speakers and LEDs directly faced the listener, who 
entered the facility through a folding door and stands on a platform 
that was adjusted in height to make his or her ears level with the 
sphere's horizontal plane.  The subject's head movement was 
tracked using a Polhemus 3-Space FastTrack. Data from the head-
tracker was then fed into the control computer via a Tucker-Davis 
HTI and transformed into raw azimuth and elevation data. From this 
point, the computer's azimuth and elevation data determined at 
which speaker the subject was looking, and the resulting LED 
cluster on the selected speaker was illuminated providing 
immediate feedback.  The resultant technique allowed the subjects 
to actively select the speaker from whom they thought the sound 
originated simply by looking at it.   To confirm a response, subjects 
used a response button, and the LEDs on the selected speaker 
flickered to provide confirmation. No feedback, however, was 
provided regarding the correctness of the response. After each 
response, subjects were required to look at the 0° azimuth 0° 
elevation speaker and press the response button. This ensured that 
the subjects were looking at the same point at the beginning of 
every trial.  [A. J. Kordik, personal communication, December 16, 
2004] 

B. DATA SET DESCRIPTION  
1. Information in the Data Set 
 The data set provided by AFRL/HEC consists of the following 

information:  [A. J. Kordik, personal communication, December 16, 2004 and Ref 

1] 

• Subject Number:  Each subject was assigned a number for 

identification purposes. 

• Trial Number:  The number of the trial for the given subject. 

• Source Speaker Number:  The number assigned to the 

speaker that produced the audio signal. 



17 

• Source Azimuth:  The azimuth of the speaker that produced 

the audio signal, measured in degrees from the front of the 

head.  See Figure 5.   

• Source Elevation:  The elevation of the speaker that produced 

the audio signal, measured in degrees from horizontal.  See 

Figure 6.   

• Level:  The intensity of the sound used in the experiment.  The 

sound level for all trials was 55 dB. 

• Duration Code:  1 indicates a 250ms signal burst;  2 indicates 

the stimulus was on continuously until the subject responded. 

• Speaker Code:  1 indicates that a speaker was chosen 

randomly from a set of speakers on the horizon; 2 indicates that 

the speaker was chosen randomly from any elevation above      

-45°. 

• Open Code:  1 indicates the subject was not wearing hearing 

protection, which was true for all trials in this experiment. 

• Timestamp:  The time at which each trial was conducted.  Used 

for record-keeping purposes.            

• Response Speaker Number:  The number assigned to the 

speaker to which the subject indicated the signal originated. 

• Response Azimuth:  The azimuth measured in degrees from 

the front of the head where the subjects indicated that they 

heard the signal noise.  Response azimuth uses the same 

reference system as source azimuth.   

• Response Elevation:  The elevation measured in degrees from 

the horizontal where the subjects indicated that they heard the 

signal noise.  The response elevation uses the same reference 

system as the source elevation. 
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• Response Time:  The time elapsed, in seconds, from the time 

the signal noise was played until the subject responded.    

• Hit:  Based upon the subject's response.  1 indicates a perfect 

response (no error); 0 indicates an imperfect response (with 

error).    

• Angular Error:  Based upon the subject's response.  Combines 

both the error in azimuth and error in elevation into one value.   
2. Reference Systems  

a. Horizontal Reference System   
The reference system used for azimuth establishes 0° as being 

directly in front of the subject's head, +90° directly to the right of the head, -90° 

directly to the left of the head and ±180° directly to the back of the head.   

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.   Horizontal Reference System 

Front of Head
0°

Right
+90°

Left
-90°

Back
±180°
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b. Vertical Reference System   
The reference system for elevation establishes the horizontal as 0°. 

Positive numbers represent elevations above horizontal, and negative numbers 

represent below the horizon.  The values range from -44.7° to 82.4°. 

 

 

 

 

 

  

 

 

     

Figure 6.   Vertical Reference System (not to scale) 
 
 
3. Variables  

a. Independent Variables 
The independent variables for this study are source azimuth and 

source elevation.  

b. Dependent Variables   
The dependent variables for this study are response azimuth and 

response elevation.  More specifically, the focus is on azimuth error and 

elevation error.  The azimuth error is calculated by subtracting the source 

azimuth from the response azimuth.  A positive value means the response was to 

the right of the source azimuth.   The elevation error is calculated by subtracting 

the source elevation from the response elevation.  Positive values represent 

responses higher than the corresponding source elevations. 

Horizontal
0°

+82.4°

-44.7°

Horizontal
0°

+82.4°

-44.7°



20 

C. DATA ANALYSIS  
The results from this data analysis support the findings listed in Chapter II.  

Localization is better for sounds in front of the listener near the horizon and 

becomes worse as the sound approaches the back of the head and/or 

approaches high or low elevations.  Approximately 70% of the responses 

provided by the subjects were direct hits, which mean they have no error.  The 

remaining 30% have errors, which are represented in the model by various 

normal distributions.    

1. Azimuth Errors 
The data was first sorted according to individual speakers. Then data for 

speakers on the left side of the head were combined with data for speakers at 

the same location on the right side of the head to obtain a larger sample size for 

each general speaker location.  See Figure 7.  In other words, the data for the 

speaker at azimuth 100° and elevation 0° were combined with the data for the 

speaker at azimuth -100° and elevation 0°.  Each speaker had an individual 

sample size around 60 observations.  The combined sample size approximately 

doubled the number observations for computational purposes. In order to do this, 

errors on the right side of a person's head were assumed to be from the same 

distribution as errors on the left side of the head.  The standard deviations for 

each location were calculated and the errors were found to be heteroschedastic.  

See Figure 8.  Areas to the front of the head near the horizon have smaller 

standard deviations than areas to the back of the head at high or low elevations.     
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Figure 7.   Number of Times Each Location Was Used as a Sound Source 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 8.   Standard Deviations for Each Speaker Location 
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 Next, the statistical software S-PLUS was used to generate a regression 

tree to sort the localization errors by standard deviations into similar groups.  

Figure 9 displays the regression tree, and Figure 10 provides the same 

information in a different format.  Note that src.el stands for “sound source 

elevation” and src.az stands for “sound source azimuth.”   

    

   

 

 

 

 

 

 

 

 

 

 

 

Figure 9.   Regression Tree for Azimuth Error Standard Deviations 
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Figure 10.   Regression Tree Surface for Standard Deviations 
 

Once the data were divided into regions with the regression tree, the 

azimuth errors within each region were analyzed and the best method by which 

to replicate the data for random number generation was determined.  First, the 

Shapiro-Wilks test for normality was used to determine if the complete data sets 

(sets that include perfect responses) within each region could have come from 

the normal distribution.  This test showed that the complete data sets for all of the 

regions were significantly different from the normal distribution.  The direct hits 

were then removed from the data and the same test was performed on the 

remaining data.  A few of these data sets were not significantly different from the 

normal distribution if an alpha of 0.01 was used.  For regions with data that 

remained significantly different from the normal distribution, a combination of 

various normal distributions was chosen to represent the errors by plotting their 

histograms and selecting the combinations that produced plots that best matched 

the histogram for the actual data.   
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a. Source Elevation Less Than 42° and Source Azimuth 
Less Than 95.3° 

There were 1,345 data points, 80% of these were perfect 

responses.  The remaining 20% were represented by a combination of two 

normal distributions:  10% of the data set with a mean of -11 and a standard 

deviation of 4, and the final 10% with mean of 11 and standard deviation of 4.  

Note that the horizontal reference for the histograms below is “degrees of error.”  

 

 

 

 

 

 

 

 

 

Figure 11.   Actual Data: Elevation < 42°, Azimuth < 95.3° 
 

 

 

 

 

 

 

 

 

Figure 12.   Replicated Data:  Elevation < 42°, Azimuth < 95.3° 
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b. Source Elevation Less Than 42° and Source Azimuth 
Greater Than 95.3° 

There were 1,224 data points, 68% of these were perfect 

responses.  The remaining 32% were represented by a combination of two 

normal distributions:  31% of the data set with a mean of 42 and a standard 

deviation of 23, and the final 1% with a mean of 0 and a standard deviation of 

100.   Note that the horizontal reference for the histograms below is “degrees of 

error.” 

 

 

 

 

 

 

 

 

Figure 13.   Actual Data:  Elevation < 42°, 95.3° < Azimuth 
 

 

 

 

 

 

 

 

 

Figure 14.   Replicated Data:  Elevation < 42°, 95.3° < Azimuth 
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c. Source Elevation between 42° and 63.9° and Source 

Azimuth Less Than 143.1° 
There were 147 data points, 50% of these were perfect responses.  

A Shapiro-Wilks test performed on the remaining 50% produced a w-value of 

0.95 and a p-value greater than 0.01.  Therefore, a normal distribution was used 

to represent this data with a mean of -4 and a standard deviation of 32.2.  The 

mean and standard deviation were computed from the 50% of the data without 

perfect responses.  Note that the horizontal reference for the histograms below is 

“degrees of error.” 

 

 

 

 

 

 

 

 

Figure 15.   Actual Data:  42° < Elevation < 36.9°, Azimuth < 143.1° 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16.   Replicated Data:  42° < Elevation < 36.9°,  Azimuth < 143.1° 

 



27 

-100 0 100 200

0
2

4
6

8

rnorm(29, 26, 61)

-100 -50 0 50 100 150 200

0
2

4
6

8
10

top1  

d. Source Elevation Greater Than 63.9° and Source 
Azimuth Less Than 143.1° 

There were 62 data points, 53% of these were perfect responses.  

A Shapiro-Wilks test performed on the remaining 47% produced a w-value of 

0.92 and a p-value greater than 0.02.  Therefore, a normal distribution was used 

to represent this data with a mean of 26 and a standard deviation of 61.  The 

mean and standard deviation were computed from the 47% of the data without 

perfect responses.   Note that the horizontal reference for the histograms below 

is “degrees of error.” 

 

 

 

 

 

 

 

 

Figure 17.   Actual Data:  36.9° < Elevation,  Azimuth < 143.1° 
 

 

 

 

 

 

 

 

Figure 18.   Replicated Data:  36.9° < Elevation,  Azimuth < 143.1° 
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e. Source Elevation Greater Than 63.9° and Source 
Azimuth Greater Than 143.1° 

There were 54 data points, 39% of these were perfect responses.  

A Shapiro-Wilks test performed on the remaining 61% produced a w-value of 

0.93 and a p-value greater than 0.03.  Therefore, a normal distribution was used 

to represent this data with a mean of -51 and a standard deviation of 103.  The 

mean and standard deviation were computed from the 61% of the data without 

perfect responses.   Note that the horizontal reference for the histograms below 

is “degrees of error.” 

 

 

 

 

 

 

 

 

Figure 19.   Actual Data:  36.9° < Elevation,  143.1° < Azimuth 
 

 

 

 

 

 

 

 

Figure 20.   Replicated Data:  36.9° < Elevation,  143.1° < Azimuth 
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2. Elevation Errors 
 The correlation coefficient between azimuth errors and elevation errors 

was calculated to be 0.17.  Although this implies a weak positive correlation, 

independence between the azimuth errors and elevation errors was assumed.  

Therefore, the same procedure used to determine the best method to replicate 

azimuth errors was used to determine elevation errors.  Note that src.el stands 

for “sound source elevation” and src.az stands for “sound source azimuth.” 
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Figure 21.   Regression Tree for Elevation Error Standard Deviations 
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Figure 22.   Regression Tree Surface for Elevation Error Standard Deviations 
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a. Source Elevation Less Than 8.9°     
There were 726 data points, 70% of these were perfect responses.  

The remaining 30% were represented by a combination of three normal 

distributions:  17% of the data set with a mean of 10 and a standard deviation of 

3, 11% with a mean of -10 and a standard deviation of 3, and the final 2% with a 

mean of 25 and a standard deviation of 15.  Note that the horizontal reference for 

the histograms below is “degrees of error.”    

 

 

 

 

 

 

 

 

 

Figure 23.   Actual Data:  Elevation < 8.9° 
 

 

 

 

 

 

 

 

Figure 24.   Replicated Data:  Elevation < 8.9° 
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b. Source Elevation between 8.9° and 33.8°, and Azimuth 
Less Than 154.35° 

There were 304 data points, 58% of these were perfect responses.  

The remaining 42% were represented by a combination of two normal 

distributions:  25% of the data set with a mean of 10 and a standard deviation of 

1, and the final 17% with a mean of 3 and a standard deviation of 10.  Note that 

the horizontal reference for the histograms below is “degrees of error.”    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25.   Actual Data:  8.9° < Elevation < 33.8°, Azimuth < 154.35° 
 
 
 
 
 

 

 

 

 

 

Figure 26.   Replicated  Data:  8.9° < Elevation < 33.8°, Azimuth < 154.35° 
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c. Source Elevation between 33.8° and 45°, and Azimuth 
Less Than 64.55° 

There were 53 data points, 38% of these were perfect responses.  

The remaining 62% were represented by a combination of two normal 

distributions:  53% of the data set with a mean of 10 and a standard deviation of 

8, and the final 9% with a mean of -60 and a standard deviation of 10.  Note that 

the horizontal reference for the histograms below is “degrees of error.”    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27.   Actual Data:  33.8° < Elevation < 45°, Azimuth < 64.55° 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 28.   Replicated  Data:  33.8° < Elevation < 45°, Azimuth < 64.55° 
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d. Source Elevation between 33.8° and 45°, and Azimuth 
between 64.55° and 154.35° 

There were 61 data points, 36% of these were perfect responses.  

A Shapiro-Wilks test performed on the remaining 64% produced a w-value of 

0.96 and a p-value greater than 0.1.  Therefore, a normal distribution was used to 

represent this data with a mean of 7 and a standard deviation of 10.  The mean 

and standard deviation were computed from the 64% of the data without perfect 

responses.  Note that the horizontal reference for the histogram below is 

“degrees of error.” 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 29.   Actual Data:  33.8° < Elevation < 45°,  64.55° < Azimuth < 154.35° 
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e. Source Elevation Greater Than 45°, and Azimuth Less 
Than 154.35° 

There were 186 data points, 50% of these were perfect responses.  

The remaining 50% were represented by a combination of two normal 

distributions:  26% of the data set with a mean of 12 and a standard deviation of 

4, and the final 24% with a mean of -10 and a standard deviation of 5.  Note that 

the horizontal reference for the histograms below is “degrees of error.” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 30.   Actual Data:  45° < Elevation,  Azimuth < 154.35° 
 

 

 

 

 

 

 

 

Figure 31.   Replicated Data:  45° < Elevation,  Azimuth < 154.35° 
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f. Source Elevation between 8.9° and 33.25°, and Azimuth 
Greater Than 154.35° 

There were 55 data points, 36% of these were perfect responses.  

A Shapiro-Wilks test performed on the remaining 64% produced a w-value of 

0.92 and a p-value greater than 0.01.  Therefore, a normal distribution was used 

to represent this data with a mean of 35 and a standard deviation of 9.  The 

mean and standard deviation were computed from the 64% of the data without 

perfect responses.  Note that the horizontal reference for the histogram below is 

“degrees of error.” 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 32.   Actual Data:  8.9° < Elevation < 33.25°,  154.35° < Azimuth 
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g. Source Elevation Greater Than 33.25°, and Azimuth 
Greater Than 154.35° 

There were 55 data points, 40% of these were perfect responses.  

A Shapiro-Wilks test performed on the remaining 60% produced a w-value of 

0.94 and a p-value greater than 0.05.  Therefore, a normal distribution was used 

to represent this data with a mean of 15 and a standard deviation of 14.  The 

mean and standard deviation were computed from the 60% of the data without 

perfect responses.  Note that the horizontal reference for the histogram below is 

“degrees of error.” 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 33.   Actual Data:  33.25° < Elevation, 154.35° < Azimuth 
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D. DATA USE 
The information resulting from the data analysis above is used to replicate 

human sound-localization errors in a simulation.  When a sound is generated, the 

true direction from the listener to the sound is computed (azimuth and elevation) 

and compared against the regression-tree surface to see in which region it falls.  

A random number is then drawn from the distribution that best represents the 

errors in that region and is applied to the true direction to the sound.  This 

imperfect information is then provided to the entity for use.   See Figures 34 and 

35.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 34.   Algorithm to Compute Imperfect Azimuth 

algorithm compute imperfect azimuth; 

begin 
 calculate the true  azimuth of the sound source from the listener with  
  respect to the listener's head 
      calculate the true elevation of the sound source from the listener with  
  respect to the listener's head 
      draw a random number between 0 and 1 
 if elevation < 42° and azimuth < 95.3° then 
  if rand < 0.8 then 
       error = 0.0 
  if 0.8 < rand < 0.9 then 
       draw error from normal distribution (-11.0, 4.0) 
  if 0.9 < rand then 
       draw error from normal distribution (11.0, 4.0) 
 if elevation < 42° and 95.3° < azimuth then 
  if rand < 0.68 then 
       error = 0.0 
  if 0.68 < rand < 0.99 then 
       draw error from normal distribution (42.0, 23.0) 
  if 0.99 < rand then 
       draw error from normal distribution (0.0, 100.0) 
 if 42° < elevation < 63.9° and azimuth < 143.1° then 
  if rand < 0.5 then 
       error = 0.0 
  if 0.5 < rand then 
       draw error from normal distribution (-4.0, 32.2) 
 If 63.9° < elevation and azimuth < 143.1° then 
  if rand < 0.53 then 
       error = 0.0 
  if 0.53 < rand then 
       draw error from normal distribution (26.0, 61.0) 
 if 63.9° < elevation and 143.1° < azimuth then 
  if rand < 0.39 then 
       error = 0.0 
  if 0.39 < rand then 
       draw error from normal distribution (-51.0, 103.0) 
 add the error to the true azimuth 
 provide the imperfect azimuth to the entity for use 
end; 
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Figure 35.   Algorithm to Compute Imperfect Elevation

algorithm compute imperfect elevation; 

begin 
 calculate the true  azimuth of the sound source from the listener with  
  respect to the listener's head 
      calculate the true elevation of the sound source from the listener with  
  respect to the listener's head 
      draw a random number between 0 and 1 
 if elevation < 8.9° then  
  if rand < 0.7 
       error = 0.0 
  if 0.7 < rand < 0.87 then 
       draw error from normal distribution (10.0, 3.0) 
  if 0.87 < rand < 0.98 then 
       draw error from normal distribution (-10.0, 3.0) 
  if 0.98 < rand then 
       draw error from normal distribution (25.0, 15.0) 
 if 8.9° < elevation < 33.8° and azimuth < 154.35° then 
  if rand < 0.58 then 
       error = 0.0 
  if 0.58 < rand < 0.83 then 
       draw error from normal distribution (10.0, 1.0) 
  if 0.83 < rand then 
       draw error from normal distribution (3.0, 10.0) 
 if 33.8° < elevation < 45.0° and azimuth < 64.55° then 
  if rand < 0.38 then 
       error = 0.0 
  if 0.38 < rand < 0.91 then 
       draw error from normal distribution (10.0, 8.0) 
  if 0.91 < rand then 
       draw error from normal distribution (-60.0, 10.0) 
 If 33.8° < elevation < 45.0° and 64.55° < azimuth < 154.35° then 
  if rand < 0.36 then 
       error = 0.0 
  if 0.36 < rand then 
       draw error from normal distribution (7.0, 10.0) 
 if 45.0° < elevation and azimuth < 154.35° then 
  if rand < 0.5 then 
       error = 0.0 
  if 0.5 < rand < 0.76 then 
       draw error from normal distribution (12.0, 4.0) 
  if 0.76 < rand then 
       draw error from normal distribution (-10.0, 5.0) 
 if 8.9° < elevation < 33.25° and 154.35° < azimuth then 
  if rand < 0.36 then 
       error = 0.0 
  if 0.36 < rand then 
       draw error from normal distribution (35.0, 9.0) 
 if 33.25° < elevation and 154.35° < azimuth then 
  if rand < 0.4 then 
       error = 0.0 
  if 0.4 < rand then 
       draw error from normal distribution (15.0, 14.0) 
 add the error to the true elevation 
 provide the imperfect elevation to the entity for use 
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V. THE MODELS 

The algorithms developed in Chapter IV are combined with the three 

models described in this chapter in a manner that better represents the individual 

Soldier during combat simulations.  The Auditory Detection Program represents 

sound propagation and human auditory detection.  The Auditory Hazard 

Assessment Algorithm extracts signatures compatible for use with the Auditory 

Detection Program from any sound recording in a WAV file format.  COMBATXXI 

is the combat simulation itself.  The combination of these algorithms and 

programs provides the entities in COMBATXXI with the ability to detect and to 

locate objects via the sense of hearing.   

A. AUDITORY DETECTION PROGRAM 
To remain consistent with the documentation for this program, the 

Auditory Detection Program will be referred to as the ADM.  [Refs 8 and 9]  Dr. 

Joel T. Kalb from the Human Research and Engineering Directorate of the U.S. 

Army Research Laboratory (ARL) provided the ADM for use in this thesis.   

1. Model Description 
Georges R. Garinther, Joel T. Kalb, David C. Hodge, and G. Richard Price 

developed the ADM as a tool to revise the aural non-detectability limits for the 

Department of Defense Criteria Standards for Noise Limits, MIL-STD-1474 

(1979).  The ADM is based on the Acoustic Detection Range Prediction Model 

(ADRPM) used by the U.S. Army Tank and Automotive Command (TACOM).  

The ADRPM "is a software program that models the propagation of acoustic 

energy through the atmosphere and the detectability of that energy."  [Ref 7]  The 

ADRPM was created in the 1970s by the BBN Corporation and has been 

upgraded though the years.  TACOM currently uses it to determine how 

susceptible mechanized vehicles are to detection by acoustic means. The ADM 

improves the ADRPM by adding the human detection algorithm and hearing 

thresholds, as well as including turbulence in the calculations for ground effect.  

[J. T. Kalb, personal communication, December 12, 2004] Some of the 
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calculations used in the ADM are described in the document, “Proposed aural 

nondetectability limits for army materiel.” [Ref 8]   

The Auditory Detection Program (ADM) has the capability of 
computing: The distance at which a target can be detected by 
unaided human hearing, the one-third octave-band spectrum not to 
be exceeded for non-detection at any specified distance, and the 
propagation losses and noise spectrum at any distance from a 
measured noise source.  This model may be broken down into two 
broad categories: the propagation of sound from the source to the 
ear of the listener, and the psychoacoustic factors that determine 
the probability that a listener will hear the sound once it reaches the 
ear. Both of these categories are controlled by a number of 
phenomena, the first producing different rates of attenuation at 
different frequencies, the second influencing the listener's 
performance and hearing sensitivity. The propagation factors 
included in the model are geometric spreading, atmospheric 
absorption, ground effect, refraction due to wind and temperature 
gradients (this portion of the model is presently being upgraded), 
barriers, and foliage.  The psychoacoustic factors are hearing 
sensitivity, background noise, and listener performance (This 
includes the critical bandwidth of human hearing, hit probability, 
false alarm rate, and listener efficiency).  Computing detection 
distance is accomplished by comparing the sound level of the 
target calculated for the listener's location when detection occurs to 
both the listener's threshold of hearing and the background noise 
level.  All measured noise data are in one-third octave-bands.  
Detection is assumed when the target sound is above both the 
threshold of hearing and background noise in at least one-third 
octave-band.  [Ref 9]  

2. Model Inputs 
The model inputs fall into four categories:  Sound measurement 

parameters, detection parameters, listener parameters, and computation 

parameters.   

a. Measurement Parameters  
Measurement parameters provide information about the sound 

signature at the time of recording.  These include: 

• The distance of the sound source from the microphone in 

meters.  Default is 30 meters. 
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• The height of the sound source above the ground in meters.  

Default is 1.2 meters.    

• The height of the microphone above the ground in meters.  

Default is 1.2 meters. 

• The ground surface flow resistivity in cgs Rayls.  The default is 

200 cgs Rayls.  The ranges of possible values for this 

parameter are found in Table 1. 

• The temperature in degrees Celsius.  Default is 15° Celsius. 

• The relative humidity in percent.  The default is 70%. 

 

Ground Surface Values for Flow Resistivity 
(cgs) 

Snow, new fallen 4 to 30 

Sand 33 to 40 

Forest floor, pine 20 to 80 

Grass: rough pasture, airport, institutional, etc. 150 to 300 

Roadside dirt, ill-defined, small rocks up to 4 

inches. 

300 to 800 

Sandy silt, hard packed by vehicles 800 to 2500 

Old dirt roadway, fine stones (1/4 inch mesh) 

interstices filled 

2,000 to 4,000 

Limestone chips, thick layer (1/2 to 1 inch mesh) 1,500 to 4,000 

Earth, exposed and rain-packed  4,000 to 8,000 

Quarry dust, fine, very hard-packed by vehicles 5,000 to 20,000 

Asphalt, sealed by dust and use > 20,000 

 
Table 1.   Range of Values for Ground Surface Flow Resistivity 
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b. Detection Parameters 
Detection parameters provide information about the situation to be 

modeled in the simulation.  These include: 

• The height of the sound source in meters.  Default is 1.2 meters. 

• The height of the listener in meters.  Default is 1.2 meters. 

• The ground surface flow resistivity in cgs Rayls.  Default is 200 

cgs Rayls.  See Table 1 for a list of possible values.  

• The temperature in degrees Celsius.  Default is 15° Celsius. 

• The relative humidity in percent.  Default is 70%. 

• The atmospheric condition.  This parameter details whether the 

listener is upwind or downwind of the sound source, the average 

wind speed in meters per second, the surface temperature in 

degrees Celsius, the temperature gradient in degrees Celsius 

per meter, and the gradient layers in meters above the ground 

(altitude) for each of the following profiles: 

− Neutral Profiles 

o Isothermal 

o Mid-latitude, summer 

o Mid-latitude, winter 

o Tropical, moist 

− Stable Profiles 

o Mid-latitude, summer night 

o Mid-latitude, winter night 

o Desert, summer night 

o Desert, winter night 

o Tropical, moist night 

− Unstable Profiles 

o Mid-latitude, summer day 

o Mid-latitude, winter day 

o Desert, summer day 

o Desert, winter day 
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o Tropical, moist day 

• Information for barriers between the sound source and the 

listener.  Data required are the number of barriers between the 

sound source and the listener, the distance of the barrier from 

the sound source in meters, and the height of the barrier in 

meters.   

• Information for foliated areas between the sound source and the 

listener.  Data required are the number of foliated areas 

between the sound source and the listener, the distance from 

the sound source to the nearest edge of the foliated area in 

meters, the depth (extent) of the foliated area in meters, the 

average leaf width in centimeters, and the average leaf area per 

unit volume in 1/meters.  Typical values are provided in Table 2.   

 

Type of Planting Leaf Area per Volume 

(m-1) 

Average Leaf Width 
(cm) 

Field of corn 6.3 7.4 

Tidal reeds 3.0 3.2 

Dense Hardwood Brush 0.5 5.0 

 
Table 2.   Typical Values for Foliated Area Parameters 

 
 

c. Listener Parameters 
Listener parameters provide information about the listener to be 

modeled in the simulation.   

• Listener Efficiency:  The listener efficiency is a value between 

zero and one, with zero being not efficient and 1 being machine 

like.  Humans are typically 0.4.     

• Hit Probability:  This is the detection probability that ranges 

between zero and one.  A 75% hit probability means that 75% of 
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listeners will detect the sound event modeled.  The default value 

is 50%.   

• False Alarm Rate:  This value ranges from zero to one.  This is 

the probability that an individual thinks he detects a sound when 

no sound event occurred.  The default value is 0.01% 

• Hearing Threshold:  This is represented as an array of 24 

numbers.  Each value in the array is the minimum intensity 

required for an individual with a specified profile to detect a 

sound.  The position of the number in the array corresponds to a 

frequency in the one-third octave band.  See Table 3.  The 

profiles include thresholds for people with the following: 

• Perfect Hearing 

• 1.5 to 2.4 years of military service 

• 7.5 to 12.4 years of military service 

• 17.5 to 22.4 years of military service 

• Poor Hearing 

• Poor Hearing with a Temporary Threshold Shift 

(TTS). 

Temporary Threshold Shift is an event in which an 

individual's hearing threshold is temporarily degraded due to 

exposure to a loud noise.  An example is when a person 

experiences ringing in the ears and/or has trouble hearing for a 

period of time after listening to loud music at a concert.   
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Table 3.   Perfect Hearing Threshold Across the One-third Octave Band 

One-third Octave Band 
Frequency (Hz) 

Perfect Hearing Threshold 
(dB) 

50 41.7 

63 35.6 

80 29.8 

100 25.1 

125 20.8 

160 16.8 

200 13.8 

250 11.2 

315 9.0 

400 7.2 

500 6.0 

630 5.0 

800 4.4 

1,000 4.2 

1,250 3.8 

1,600 2.6 

2,000 1.0 

2,500 -1.2 

3,150 -3.5 

4,000 -3.9 

5,000 -1.1 

6,300 6.5 

8,000 15.3 

10,000 16.4 
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d. Computation Parameters 
Computation parameters provide information about the target 

generating the sound, the background noise, and the precision that the program 

uses to find the output distance.   

• Target Spectrum:  Like the hearing threshold, this is 

represented as an array of 24 numbers.  Each number 

represents the intensity of sound produced by the target.  The 

position in the array corresponds to a particular frequency in the 

one-third octave band.  Profiles include an M60 tank idling and 

an unspecified target created for analysis.  Target spectra may 

be acquired from recordings using the AHAAH.  See Chapter V, 

Section B (page 53) for details.     

• Background Spectrum:  Like the hearing threshold and target 

spectrum, this is represented as an array of 24 numbers.  Each 

number represents the intensity of sound produced by the 

background.  The position in the array corresponds to a 

particular frequency in the one-third octave band.  Background 

profiles include, but are not limited to 

• Jungle, day 

• Jungle, night 

• Desert, low wind 

• Desert, moderate wind 

• Urban 

• Rural and Suburban Areas (EPA upper limit) 

• Rural and Suburban Areas (EPA lower limit)  

• North rim of the Grand Canyon (extreme quiet) 

• Noisy jungle. 

• Detection Range Precision:  This is the precision for the line 

search, conducted by the ADM, to determine the output range.  

The default value is 0.1%  



49 

3. Model Assumptions and Limitations 
a. Assumptions 

(1) Point Source:  The ADM assumes sounds generated 

are from a point source.  A point source is an "idealized sound source, or close 

actual approximation to it, that radiates sound uniformly in all directions in a free-

field situation."   [Ref 20]  This assumption may cause more detection events to 

occur for a sound than would happen in real life.  This will occur because the 

sound in the simulation will travel a farther distance in more directions than under 

actual conditions, and therefore be detected by more people.    

(2) Reflective Surfaces:  This program does not model 

sounds bouncing off of reflective surfaces other than the ground.  This 

assumption may cause sounds to propagate farther than they actually would in a 

real situation because it ignores the dispersion caused by reflected surfaces and 

the interference of reflected sound waves on the original sound wave (echoes).     

(3) Novice Listener:  The ADM assumes the listener is 

not actively listening for sounds.  This will result in a smaller number of 

detections than would probably actually happen.  Individuals who are actively 

listening for a particular sound will probably be able to detect it at a lower 

intensity.     

(4) Detection vs. Classification:  The model calculates 

the point at which a sound can be detected, not necessarily classified.  Detection 

is the event in which a human has heard something, but does not know what was 

heard.  Classification is the event in which a human has heard something and 

knows what was heard.  By treating a detection as a classification, this 

assumption may cause a larger number of desired reactions to a sound cue than 

would actually happen.  A person who merely detects a sound may attempt to 

better classify a sound before reacting whereas a person who classifies a sound 

will react immediately.       

(5) Detection Probability:  Listeners have a 50% chance 

of detection if a sound's intensity is equal to their hearing threshold and both the 
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intensity and threshold are greater than any background noise.  This assumption 

should have little effect on the output of the model.     

b. Limitations           
(1) Sound Signatures:  The sound signatures used for 

this study did not include information describing the conditions during recording.  

The microphone distance and height during the time of recording for small-arms 

weapons were assumed to be 0.5 meters and 1.2 meters respectively.  The 

microphone distance was estimated by comparing the maximum intensity level 

for each rifle signature to the known intensity levels of these weapons, which 

were measured from the location of the firer's head (about 0.5 meters). [Ref 27]  

The height is the typical height of a weapon when fired from a standing position.  

This lack of information should have minimal effect on the output of the model, 

assuming the sounds were not produced under extreme conditions.   

(2) Temperature and Humidity:  It was found that the 

variables that store the temperature and humidity during the time of sound 

recording were not used anywhere in the code.  This should have a minimal 

effect on the output for the model as long as sounds are not recorded under 

conditions that vary greatly from the standard temperature and humidity of 15° 

Celsius and 70% humidity.    

4. Model Use 
One can see that the ADM accounts for many details in a sound detection 

event.  This robust capability makes the ADM a great tool for use with combat 

simulations.  There are three possible ways to use the ADM: pre-calculate 

probabilities, employ a cookie-cutter method, and create a new code that 

calculates the probabilities directly.  Due to time constraints and the workload 

required to implement the other methods, the cookie-cutter method was chosen 

for immediate use in COMBATXXI.     

a. Pre-calculate Probabilities 
 In its current form, the ADM calculates the distance at which a 

percentage of listeners detect a sound.  In other words, a user provides a 

probability, perhaps 75%, and the ADM provides the distance at which 75% of 
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listeners detect the sound.  With this method, the simulation uses the ADM to 

calculate the distances at which 99% and 2% of listeners detect the given sound.  

These ranges are pre-calculated at the start of the simulation and used 

throughout the simulation to determine whether or not a listener has detected the 

sound.  For simplification, a linear relationship of the probabilities between the 

near and far distances is assumed.  A detection event is dependent upon the 

range of the listener from the sound source.  Let x be the range of the listener 

from the sound source, then: 
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Figure 36.   Pre-calculation Method 
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 This method has advantages because it facilitates stochastic 

modeling by using probabilities, performs the complicated sound propagation 

calculations at the beginning of the simulation, which saves computational 

resources, and which has the potential to model a myriad of sounds.  The 

disadvantages are that the method is laborious to code into the combat 

simulation and does not account for the effects of weather, foliated areas, or 

barriers that may lie between the listener and the sound source.   

b. Cookie Cutter 
 With this method, the ADM is used separately from the combat 

simulation to calculate the ranges at which there is a 99% probability of detection 

for a specified sound.  If the listeners are within this range of the sound, they 

hear it.  If they are beyond this range, they do not hear it.  This concept is 

supported by clinical tests on human subjects.  These tests show that sound 

detection with changes in intensity (or distance from the sound source) 

approximates an all-or-none phenomenon, as just described.  [Ref 5]   

 To use this method, one must assume that all listeners have the 

same hearing ability, changes in environmental factors have little effect on the 

propagation of the sound, and a sound occurring beyond an individual's range of 

influence is inconsequential.  In other words, if a Soldier hears rifle fire from three 

miles away, being outside the effective range of the weapon, the source of the 

rifle fire is beyond his visual range, and he cannot move to engage the target in a 

timely manner.  Therefore, no evasive action is required and no attempt to 

acquire the target is warranted.  If, however, a Soldier hears a rifle 200 meters 

away, then he should take action because he is within range of the weapon. 

Since the distances at which the small arms weapons have a 99% chance of 

detection are typically large (greater than a mile and beyond the range of an 

individual's influence), individuals are cued to noises within this range and ignore 

sounds beyond it.   
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 This method facilitates a simple cookie-cutter detection routine, 

which is easy to code and which does not require further use of the complicated 

propagation model.  This is the method ultimately implemented in COMBATXXI.  

c. Create New Code 
 It may be possible to rewrite the ADM code to calculate a detection 

probability directly given the range of the listener from the sound source rather 

than estimating the probability as described in Part "A" above.  This method 

would allow for stochastic modeling and would be the most accurate of the 

methods listed because it could use the current states of a listener, the sound, 

and the environment to determine the detection probabilities.  However, this 

method would be the most computationally expensive method and would require 

additional work to write the algorithm and to code it into the combat simulation.   

B. AUDITORY HAZARD ASSESSMENT ALGORITHM 
1. Model Description 
To remain consistent with the documentation for this program, the 

Auditory Hazard Assessment Algorithm is referenced to as AHAAH. [Ref 10]  The 

AHAAH was created by the same researchers who wrote the ADM at the Army 

Research Laboratory.  Both models were used to support MIL-STD-1474.  The 

AHAAH "evaluates hazards for the human ear for sounds traveling toward the 

side of the head (a worst-case condition)."  [Ref 10]   

One of the outputs of the model is an array of sound pressure levels 

across the one-third octave bands.  See Figures 37 and 38.  The band outputs 

are a byproduct of the hazard analysis, which takes the waveform directly into a 

circuit model of the ear and calculates stresses in the inner ear using numerical 

integration of the equations of motion.  The band spectrum results from a Fourier 

transformation of the waveform.  The spectrum is used to measure hearing 

protector insertion losses and to simulate the pressures under a hearing 

protector.  For this thesis, the AHAAH was used to provide sound signature for 

use with the ADM. [J. T. Kalb, personal communication, May 19, 2005]   

Figure 37 shows the graphical output from the AHAAH for the single shot 

of an M16.  The top graph displays the intensity of the sound across the one-third 
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octave band or the signature of the sound.  The ADM used this information.  The 

bottom graph shows the pressure of the sound in reference to the time elapsed.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37.   AHAAH Graphical Output for an M16 Burst 
 

Figure 38 shows the AHAAH spreadsheet output for the single shot of an 

M16.  The left column provides the center frequencies of the one-third octave 

band, and the right column provides the intensities in dB of the sound at the 

given frequency.  The ADM uses the intensity values from the range 50 Hz to 

10,000 Hz.   
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Figure 38.   AHAAH Spreadsheet Output for an M16 Burst 

Leq300ms: steady 1/3 octave band sound 
pressure levels which when integrated for
300 milliseconds have energies equal to 
that of the signal.

Freq(Hz) Leq(dB)
2.51 92.47
3.16 92.56
3.98 92.23
5.01 90.63
6.31 84.87
7.94 80.91

10.00 83.28
12.59 89.55
15.85 93.02
19.95 95.04
25.12 92.58
31.62 90.98
39.81 91.52
50.12 92.42
63.10 85.65
79.43 97.10

100.00 100.96
125.89 104.26
158.49 107.64
199.53 123.37
251.19 130.55
316.23 130.25
398.11 129.24
501.19 133.21
630.96 138.06
794.33 145.33

1,000.00 143.30
1,258.93 150.03
1,584.89 149.79
1,995.26 151.33
2,511.89 150.99
3,162.28 151.71
3,981.07 149.24
5,011.87 146.39
6,309.57 147.97
7,943.28 146.28

10,000.00 147.30
12,589.25 145.84
15,848.93 145.23
19,952.62 144.49
25,118.86 140.80
31,622.78 134.81
39,810.72 126.69
50,118.72 112.26
63,095.73 99.44
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2. Model Use 
Dr. Ellen Haas of the Army Research Laboratory provided audio Compact 

Disks (CDs) containing approximately 170 sound recordings.  Dr. Kalb converted 

these audio sounds into computer WAV files and also provided the AHAAH.  The 

M16 and AK47 assault-rifle WAV files were selected, and the AHAAH was used 

to extract the sound signatures across the one-third octave band for these 

weapons.     

C. COMBATXXI 
1. Model Description 
The Combined Arms Analysis Tool for the 21st Century (COMBATXXI) is a 

high-resolution, closed-form, stochastic, analytical combat simulation being 

developed by TRAC-WSMR and the Marine Corps Combat Development 

Command (MCCDC).   COMBATXXI is a replacement for the Combined Arms and 

Task Force Evaluation Model (CASTFOREM) and is intended to support the 

analysis of force design, operational requirements, war-fighting experiments, and 

weapon-system development. This model combines hard-coded physical 

algorithms, primitive behaviors, and tactical behaviors with user-defined 

scenarios and rules to detail the interactions between the individual entities in the 

simulation.    [Ref 22] 

2. Model Implementation 
The localization algorithms and data from the ADM and AHAAH were 

implemented with COMBATXXI in the following manner.  The AHAAH was used to 

extract sound signatures for the AK-47 and M-16 assault-rifles from WAV file 

recordings.  These sound signatures were input into the ADM, and the ADM was 

used to determine the ranges at which these sounds had a 99% probability of 

detection.  These ranges were then coded into COMBATXXI as part of a cookie-

cutter sound-detection routine.    

In addition to the aforementioned work, several additional algorithms were 

hard-coded into COMBATXXI to make this concept feasible in the combat 

simulation:  Sound signatures were mapped to the appropriate weapon systems, 

a trigger was created for a "make a noise" event, and a cookie-cutter method 
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was implemented to cue the entities within the range of the sound to allow the 

entities to detect and to localize objects.  The added code provides the 

framework that allows users to customize sound use for their scenarios.   

In order to use the sound propagation, detection, and localization routine 

in COMBATXXI, a user must first include sound detection and localization as a 

behavior rule when creating the scenario.  This is done by using the “Rule Library 

Builder” to assign a “Rule Template” to the unit template, units, or entities for 

which the user wants to have hearing capability.  Within the “Select Trigger 

Events” section of the window, the user selects the “SoundHeard” option under 

the “detection” functionality directory.  See Figure 39.  Once the “SoundHeard” 

functionality is enabled, a user may either create a rule or import an existing rule 

for use with all the sounds replicated in the simulation.  Currently, COMBATXXI 

models sounds for the M-16 and AK-47 assault-rifles.  However, the code writers 

have the option of adding more sounds by using the AHAAH and ADM, as 

described in previous sections.     

 

 

 

 

 

 

 

 

 

 

 

 



58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39.   Rule Library Builder 
 

To create a rule, the user names and defines his custom behavior in the 

“Rule Data” and “Define Rule” sections of the window.  Figure 39 shows the 

custom behavior rule, “CueEyesToSound.”  In the “Define Behavior” block of 

Figure 39, the rule directs the selected entities to cue their eyes to all sounds in 

the simulation, except for the M-16 assault-rifle.  The exception for the M-16 was 

created to prevent the entities from cuing to members of their own unit. 

To import a rule, the user simply clicks on “Import” at the bottom of the 

window, selects the “Detection Folder,” then selects the desired rule.  See Figure 
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40.  Once the rule is imported, the user may alter the rule by changing the 

commands in the “Define Behavior” box.  The rules currently available for import 

with the “SoundHeard” functionality are “CueEyesToSound” and 

“MoveToSound”.  The “CueEyesToSound” rule is described above.  The 

“MoveToSound” rule directs an entity to move toward a sound for a specified 

period of time.  If a target is not found within that time period, the entity continues 

with the mission that it was performing prior to hearing the sound.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40.   Import a Behavior Rule 
 

3. Application 
By adding the sound-cuing capability to COMBATXXI, users can specify 

how entities react to sounds in the simulation in any manner they choose.  As an 

example, a user may instruct entities to assume a protective posture immediately 

when they hear weapon fire.  This flexibility gives analysts the ability to examine 
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the effects of human hearing and acoustic detection in many different ways 

during combat operations.  Possible analysis includes a Soldier’s ability to 

survive attacks by assuming a protective posture when reacting to indirect or 

direct-fire weapons, the effects of quieter equipment on nondetectability, a 

Soldier’s ability to locate targets in poor visibility situations (smoke, heavy 

vegetation, low light, enemy positioned behind walls, etc), a Soldier’s ability to 

gather intelligence, or the effects of non-lethal acoustic weapons.         
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VI. EXPERIMENTAL DESIGN AND DATA ANALYSIS 

A. EXPERMIMETNAL DESIGN   
1. Scenarios 
This experiment was designed with two scenarios to determine whether 

the addition of the ADM, AHAAH, and sound-localization algorithms to 

COMBATXXI causes computer-generated entities to act more realistically than 

they would without the additions.  The first scenario was designed to detect the 

differences between COMBATXXI and COMBATXXI with the auditory-detection 

capabilities added.  The second scenario was designed to detect the differences 

between COMBATXXI with perfect sound-localization capabilities and COMBATXXI 

with imperfect sound-localization capabilities.  Perfect sound localization 

provided computer-generated entities with exact location information for a sound 

source.  Imperfect sound localization used the sound-localization algorithms 

developed in this thesis to provide an entity with inaccurate location information 

for a sound source. 

a.   Scenario A  
This scenario was designed to detect differences between 

COMBATXXI and COMBATXXI with the auditory-detection capabilities added.  The 

test scenario consisted of one red squad comprised of 14 members and one blue 

squad comprised of ten members.  The red squad's mission was to kill as many 

entities on the blue team as possible, and the blue team's mission was to move 

along a route from an assembly area to a final objective.  The terrain was rolling 

hills with mixed vegetation (Folda Gap, Germany).  The members of the blue 

team moved in a column formation with staggered orientation (i.e., the first 

person faced forward, the second faced to the right, the third to the left, the fourth 

to the right, and so forth, with the final person faced rearward).  The red team 

was dispersed across the terrain with one ambush set up along the blue route.   

Only the blue team had the ability to “hear.”  

Figure 41 graphically depicts Scenario “A.”  The circles represent 

individual Soldiers.  The lines on the circles point in the directions in which the 
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Soldiers are currently oriented.  The blue team is organized in a row at the 

bottom left corner of the figure.  The solid line that runs from the lower left to the 

upper right of the figure is the path traveled by the blue team.  Members of the 

red team are dispersed along the blue team’s path.  The shaded areas represent 

terrain consisting of scrub brush.    

 

 
Figure 41.   Scenario A 

  

 

     b.     Scenario B  
This scenario was designed to detect the difference between 

COMBATXXI with perfect sound-localization capabilities and COMBATXXI with 

imperfect sound-localization capabilities.   This scenario consisted of twelve blue 
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entities divided equally into four squads and two individual red entities.  The 

missions of the red and blue teams were the same as in Scenario “A.” 

The two red entities were located in hide positions on opposite 

sides of the blue team’s path for an ambush.  The positioning of the red entities 

was intended to test the accuracy of the blue entities’ cuing abilities.  With 

Scenario “A,” 14 red entities were dispersed along the blue team’s path.  The 

large number of entities and dispersion provided a “target rich” environment for 

the blue team.  In Scenario “B,” the scarcity of targets, as well as their hidden 

positions, should have made it more difficult for the blue entities to acquire them.   

The blue squads traveled down the path, separated by a fixed time 

interval.  The small number of blue entities in each squad and the time 

separation between the squads were intended to mitigate the effects of “massed 

cuing” as demonstrated in Scenario “A.”  “Massed cuing” is the effect of multiple 

entities simultaneously cuing to a target and at least one of them acquiring the 

target.  With a large number of entities, as in Scenario “A,” there is a much higher 

probability of this happening.          

Figure 42 graphically represents Scenario “B.”  As with Scenario 

“A,” the circles represent individual Soldiers.  The lines on the circles point in the 

directions in which the Soldiers are currently oriented.  The blue team is located 

at the bottom of the figure and is organized in four teams of three entities.  The 

blue line that runs from the bottom to the top of the figure is the path traveled by 

the blue team.  Two red entities are located on opposite sides of the blue team’s 

path in the top third of the figure.  The shaded areas represent terrain consisting 

of scrub brush.    
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Figure 42.   Scenario B 

  

2. Cases 
Each scenario was executed using five cases:  “No Sound” (NS), “Sound 

with No Errors While Moving” (SNM), and “Sound with No Errors While Pausing” 

(SNP), “Sound with Errors While Moving” (SEM), and “Sound with Errors While 

Pausing” (SEP).  The events “Errors” and “No Errors” were included to test 

whether or not the sound-localization algorithms that were added to COMBATXXI 

caused a difference in the outcome of the simulation.  The events “Moving” and 

“Pausing” were added to the scenarios because it was thought that the algorithm 

for vision might yield different acquisition results for entities that are moving as 

opposed to stationary.   

The first case, NS, was the base case with COMBATXXI under its current 

configuration.  The case, SNM, was COMBATXXI with the added auditory-

detection capabilities of the ADM and AHAAH and using the “CueEyesToSound” 
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rule, as described in the previous section.  This case provided entities with 

perfect target location while they moved constantly toward their objective, even 

when a sound was heard.  The SNP case was similar to SNM, except the entities 

briefly stopped their movement when a sound was heard in order to attempt to 

better locate the source of the sound.  The final two cases, SEM and SEP, were 

similar to SNM and SNP with the difference that SEM and SEP provided entities 

with target location error.  In all five cases, the entities could fire only upon 

enemies that were acquired via vision.   

For case NS, the entities could acquire their targets through vision if their 

eyes were already oriented in the direction of the target and the target fell within 

the entities’ field of view.  Entities did not reorient their eyes after shots were 

fired.  This is the way COMBATXXI is currently configured.  For the other cases, 

entities initially acquired targets through vision if they were oriented in the 

direction of the target, as was done with NS.  However, once a shot was fired by 

a red entity, each blue entity heard the shot and reoriented its eyes in the 

direction from which the shot originated.  For SNM and SNP, the entities looked 

directly at the target, and for SEM and SEP, the entities looked in the general 

direction of the target.  The entities then used their vision to attempt to locate the 

target.  If the target was located, the entities engaged the target.      

3. Measures of Effectiveness (MOE) 
The Measure of Effectiveness (MOE) used for both scenarios was the 

number of fatal wounds inflicted on blue entities.  This MOE defines the 

accomplishment of both the red and blue squads’ missions.  The red squad’s 

mission was to kill as many blue as possible.  The blue squad’s mission was to 

move on to a final objective.  Any blue entity not killed eventually moved to the 

final objective.  A low number of blue fatal wounds indicated the blue entities 

were able to adequately defend themselves, resulting in more blue team 

members reaching their final objective.                 

B. DATA ANALYSIS 
This analysis was conducted to determine whether there were differences 

among COMBATXXI as currently configured, COMBATXXI with auditory-detection 
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capabilities and perfect localization added, and COMBATXXI with auditory-

detection capabilities and imperfect localization added.  The differences were 

then examined to determine whether the combination of the sound-localization 

algorithms, ADM, AHAAH, and COMBATXXI more realistically represented the 

individual Soldier.     

1. Overview 
S-PLUS statistical software was used to conduct the data analysis.  One 

hundred trials of each case were run for each scenario.  First, the data for each 

of the five cases was compared against every other case within each scenario.  

Next, the case “Sound with Errors While Moving” was combined with the case 

“Sound with Errors While Pausing” to form the group “Errors” and the case 

“Sound with No Errors While Moving” was combined with the case “Sound with 

No Errors While Pausing” to form the group “No Errors.”  These two groups were 

then compared within each scenario.  Finally, the data for both scenarios were 

combined in a similar manner, as just described, to create one large data set with 

“Errors” and one with “No Errors.”  Shapiro-Wilks Tests for Normality, Friedman’s 

Tests for a Randomized Block Experiment, Wilcoxon Rank-Sum Intervals utilizing 

the Bonferroni Correction, descriptive statistics, and boxplots were used to 

analyze the data produced by these trials.  Finally, "face validation" was used to 

determine which implementation of COMBATXXI provided the most realistic 

results.    

2. Data Collected 
The data collected for each trial was the number of fatal wounds inflicted 

on the blue team.  Each case was run 100 times.  This number was selected 

because COMBATXXI currently has the ability to use 100 random number seeds.  

Therefore, each case was run for each scenario once with each random number 

seed.   See Appendix B for data.  

3. Shapiro-Wilks Test for Normality  
Shapiro-Wilks Tests for Normality were conducted to determine whether 

the data produced for each scenario by each case in this experiment could have 

come from the normal distribution.   The null hypothesis was that the distribution 
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producing the data was not significantly different from the normal distribution.  

The alternative hypothesis was that the distribution producing the data was 

significantly different from the normal distribution.  The results of the Shapiro-

Wilks Tests performed on this data set showed that the data produced by each of 

the five cases under both scenarios, as well as the combined groups “Errors” and 

“No Errors,” were significantly different from the normal distribution.    This result 

led to the selection of distribution-free hypothesis tests and intervals to analyze 

this data set further.  [Ref 6] 

4. Friedman’s Test for a Randomized Block Experiment 
Friedman’s Test for a Randomized Block Experiment is a distribution-free 

hypothesis test that is used to compare the expected values of multiple (more 

than two) samples.  This test is often used in place of ANOVA when data are not 

normally distributed. [Ref 6]  For this experiment, Friedman’s Test was used to 

determine whether any differences existed among the expected values of the 

data for the five various cases within each scenario.   This test was not used to 

compare the combined samples of “Errors” and “No Errors.” 

For this data analysis, the treatments were the various cases while the 

blocks were the observation number for each data point.  The selection of the 

cases as treatments is relatively straight forward and does not warrant further 

discussion.  However, the selection of observation number as the selection for 

blocks does.  Each observation for each trial was gained by using a specific 

random number seed.  Therefore, each observation within a case used the same 

seed as the same observation number within all the other cases.  For example, 

observation “1” for case NS used the same random number seed as observation 

“1” for case SNM, as well as observation “1” for case SEM.  This resulted in 100 

blocks used for the Friedman’s test, one for each of the 100 random number 

seeds.         

The Friedman’s Test conducted on the data for each of the five cases 

showed that differences existed among the cases within Scenario “A” as well as 

among the cases within Scenario “B.”  This test, however, did not provide any 
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information about which cases were different from one another.  In order to do 

this, the Wilcoxon Rank-Sum Interval using the Bonferroni Correction was used.   

5. Wilcoxon Rank-Sum Interval Using the Bonferroni Correction 
The Wilcoxon Rank-Sum Interval is a distribution-free hypothesis test that 

compares the locations of two samples to determine if they are different from 

each other.  This test is often used in place of the t-test or z-test when data are 

not normally distributed.  For this analysis, the paired Wilcoxon Rank-Sum 

Interval was used to capture the effects of using the same random number seed 

for each observation with each case.  [Ref 6]   

The Bonferroni Correction is an adjustment applied to a family of multiple 

hypothesis tests to control the family-wise error rate.  The Bonferroni Correction 

is applied by dividing the alpha value by the number of comparisons performed.  

This method keeps the probability of rejecting at least one null hypothesis when it 

is true (Type I error) below the desired alpha value.  [Ref 6]   

a.   Comparison of Five Cases within Each Scenario 
For this situation, five cases were compared against one another 

within each scenario.  Therefore, a total of ten Wilcoxon Rank-Sum Tests were 

conducted and the alpha value was divided by ten before comparing it to the p-

values.  Tables 4 and 5 provide the p-values that resulted from the paired 

Wilcoxon Rank-Sum Intervals using the Bonferroni Correction.   

 

Scenario A
NS SEM SEP SNM SNP

NS X 0 0 0 0
SEM 0 X 0.1277 0.0648 0.9194
SEP 0 0.1277 X 0.0003 0.2076
SNM 0 0.0648 0.0003 X 0.2179
SNP 0 0.9194 0.2076 0.2179 X  

Table 4.   p-values for Scenario “A” 
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Scenario B
NS SEM SEP SNM SNP

NS X 0 0 0 0
SEM 0 X 0.3303 0.1237 0.2541
SEP 0 0.3303 X 0.0027 0.0087
SNM 0 0.1237 0.0027 X 0.7289
SNP 0 0.2541 0.0087 0.7289 X  

Table 5.   p-values for Scenario “B” 
 

For both scenarios using an alpha of 0.05 (0.005 once the 

Bonferroni Correction was applied), the case NS was significantly different from 

all other the cases, and cases SEP and SNM were different from each other.  For 

Scenario “B,” the case SEP was significantly different from both SNM and SNP 

for when an alpha of 0.1 was used.  

b.   Comparison of “Errors” and “No Errors” within Each 
Scenario 

Within each scenario, the sample “Errors” was compared to “No 

Errors” using the Wilcoxon Rank-Sum Test.  This test resulted in p-values of 

0.0289 for Scenario “A” and 0.0029 for Scenario “B.”  This test demonstrates that 

there are significant differences existed between these two data samples.  

c.   Comparison of “Errors” and “No Errors” Combining 
Both Scenarios 

The sample titled “Errors” from Scenario “A” was combined with the 

sample of the same name from Scenario “B” and compared against the 

combined sample titled “No Errors.”  The Wilcoxon Rank-Sum Test conducted on 

these two samples yielded a p-value of 0.0003 which demonstrates again that 

“Errors” is significantly different from “No Errors.”   

6. Descriptive Statistics and Boxplots 
a.   Comparison of Five Cases within Each Scenario 

1.   Scenario “A”:  The descriptive statistics shown in 

Table 6 and boxplots in Figure 43 are arranged in order of decreasing means.  

The case with the largest mean is on the left, progressing to the case with the 

lowest mean on the right.  A high mean represents poor performance by the blue 

team.  Note that the NS case was both significantly different from all the other 
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cases and resulted in the worst blue team performance, regardless of the 

statistics used for comparison.  The SEP case yielded poorer blue team 

performance than did the SNM case when using the max or mean statistics for 

comparison and was similar when using the median, mode, or min statistics.  The 

analysis from the previous section proved SEP to be significantly different from 

SNM.  The boxplots in Figure 43 reinforce these results graphically.  It is 

interesting to note that the cases that include errors appear to be grouped in a 

manner that suggests they perform slightly worse than the cases that do not 

include errors.  This observation agrees with the analysis above that determined 

there is a difference between cases with “Errors” and cases with “No Errors.”   

 

 

Table 6.   Descriptive Statistics for Scenario “A” 
 

Descriptive Statistics for Scenario A

NS SEP SEM SNP SNM
Size 100 100 100 100 100
Max 12 6 9 5 4
3rd Quartile 10 2 2 2 2
Median 10 1 1 1 1
Mean 9.66 1.59 1.4 1.35 1.08
Mode 10 1 0 1 1
1st Quartile 9 1 0 0 0
Min 4 0 0 0 0
Std Dev 1.26 1.22 1.41 1.26 0.94
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Figure 43.   Boxplots for Scenario A 
 
 

2. Scenario “B”:  As with Scenario “A”, the descriptive 

statistics in Table 7 and boxplots in Figure 44 are arranged from left to right, in 

order of decreasing means.  Again, NS was significantly different from all the 

other cases and resulted in the worst blue team performance regardless of the 

statistics used for comparison.  The case SEP yielded poorer blue team 

performance than did the SNM and SNP cases when using the max or mean 

statistics for comparison and was similar when using the median, mode, or min 

statistics.  The analysis from the previous section proved SEP to be significantly 

different from SNM when using an alpha of 0.05 and different from SNM and 

SNP when using an alpha of 0.01.  The boxplots in Figure 44 reinforce these 

results graphically.  As with Scenario “A,” the cases with errors appeared to 

perform slightly worse than the cases without errors.   
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Table 7.   Descriptive Statistics for Scenario B 
 

 

Figure 44.   Boxplots for Scenario B 
 
 

Descriptive Statistics for Scenario B

NS SEP SEM SNP SNM
Size 100 100 100 100 100
Max 13 11 7 6 7
3rd Quartile 12 2.25 2 1 1
Median 12 1 1 1 1
Mean 10.89 1.6 1.25 1.09 0.97
Mode 12 0 0 0 0
1st Quartile 11.75 0 0 0 0
Min 1 0 0 0 0
Std Dev 2.49 1.94 1.44 1.40 1.34
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b. Comparison of “Errors” and “No Errors” within Each 
Scenario 

Combining the cases with “Errors” into one group and the cases 

with “No Errors” into another group provides information on how the localization 

algorithm created in this thesis performs when the entities either pause or 

continue moving while localizing sounds.  In this case each group contains 

performance information for entities that continue to move while localizing a 

sound source, as well as for entities that stop to better pinpoint the source of a 

sound.  As before, the cases are ordered with the highest mean on the left and 

lowest mean on the right within each scenario.  Table 8, Figure 45, and Figure 46 

indicate that the case with “Errors” results in slightly worse performance for the 

blue team in both scenarios than the case with “No Errors.”   

 

 

Table 8.   Descriptive Statistics for “Errors” and “No Errors” for Each Scenario 
 
 
 
 
 
 
 
 
 
 
 

Descriptive Statistics for "Errors" and "No Errors"
within Each Scenario

Scenario A Scenario B
Error No Error Error No Error

Size 200 200 200 200
Max 9 5 11 7
3rd Quartile 2 2 2 1
Median 1 1 1 1
Mean 1.50 1.22 1.43 1.03
Mode 1 1 0 0
1st Quartile 1 0 0 0
Min 0 0 0 0
Std Dev 1.32 1.12 1.71 1.37
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Figure 45.   Boxplots for “Errors” and “No Errors” for Scenario “A” 
 
 

Figure 46.   Boxplots for “Errors” and “No Errors” for Scenario “B” 
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c.   Comparison of “Errors” and “No Errors” Combining 
Both Scenarios 

Combining the two conglomerated groups from both scenarios into 

two large groups with “Errors” and “No Errors” provides information on how the 

localization algorithm performs with entities acting in various manners and in 

multiple situations.  The data in Table 9 and Figure 47 are arranged as before 

with the best performing case on the right and the worst performing on the left.  

This table and figure again demonstrate that the case with “Errors” provides 

slightly worse performance than the case with “No Errors.” 

  

Descriptive Statistics for "Errors" and "No Errors"

Error No Error
Size 400 400
Max 11 7
3rd Quartile 2 2
Median 1 1
Mean 1.46 1.12
Mode 1 0
1st Quartile 0 0
Min 0 0
Std Dev 1.53 1.25  

Table 9.   Descriptive Statistics for “Errors” and “No Errors” 
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Figure 47.   Boxplots for “Errors” and “No Errors” for Both Scenarios 
 
 

 

7. Face Validation 
Face validation is an informal validation technique in which "project team 

members, potential users of the model, and subject matter experts (SMEs) 

review simulation output (e.g., numerical results, animations, etc.) for 

reasonableness.  They use their estimates and intuition to compare model and 

system behaviors subjectively under identical input conditions and judge whether 

the model and its results are reasonable." [Ref 24]    

From the results of the data analysis, clearly, the cases using the auditory 

detection capability in the simulation produced outcomes that were statistically 

different and much more favorable for the blue team than without this capability.  

By observing how the entities reacted while the simulation was running, one sees 
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that the entities behaved in a more realistic manner with auditory detection 

included than without.  Without auditory detection in the simulation, the entities 

did not react to an attack unless they were attacked directly from the front.  With 

the auditory detection, entities reacted whenever a shot was fired, even if the 

shot was not directed at them.      

The data analysis also demonstrated that COMBATXXI using localization 

errors produced results that were statistically different and slightly less favorable 

than without the errors applied.  The only exception to this was when the five 

separate cases were compared against each other.  In this instance, some of the 

cases with errors applied were different from some of the cases without errors, 

but not all.  This leads to the conclusion that the addition of sound-localization 

errors to the simulation may produce outcomes slightly less favorable for the 

entities that use the errors.   

Additionally, it follows conventional wisdom that applying errors to a 

localization routine would result in fewer target acquisitions, therefore fewer red 

kills, and ultimately more blue casualties than when providing entities with perfect 

information.  This leads to the conclusion that using the sound-localization 

algorithm developed in this thesis provides outcomes that are consistent with 

conventional logic.   

The face validation method was used to validate the use of the ADM, 

AHAAH, and sound-localization algorithm for use with COMBATXXI.  It was 

evident that the addition of the auditory-detection capability and sound-

localization algorithms to COMBATXXI caused the entities to act in a manner that 

was reasonable.   
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VII. SUMMARY, FUTURE RESEARCH, AND CONCLUSIONS 

A.       SUMMARY 
The focus of this thesis was to enhance combat simulations by providing a 

method by which computer-generated entities could use their sense of hearing to 

detect and to locate objects through a phenomenon known as "sound 

localization."  This goal was accomplished by providing three tools: a program 

that models sound propagation and auditory detection, a program that extracts 

sound signatures from recordings, and algorithms that replicate a human’s 

sound-localization abilities.   

Examination of previous work showed that sound cuing in combat 

simulations, such as OneSAF, JANUS, and UCCATS, has primarily used simple 

sound propagation and auditory-detection models and that sound-localization 

studies have focused on replicating auditory cues with headphones to motivate a 

human to a desired response.  Sound-localization studies demonstrated that a 

human's directional location error depends on the location of the sound source in 

relation to the head.  A human's most accurate localization abilities are for 

sounds originating from the front of the subject near the horizon, and the worst 

performance occurs for sounds originating from behind the subject at a high or 

low elevation.   

Studies of the phenomena of human auditory detection revealed that 

auditory detection is a function of both the physical characteristics of a sound 

(frequency, amplitude, temporal characteristics, and location) and a human’s 

hearing threshold.  

An analysis of sound-localization data, provided by the Air Force 

Research Lab, led to the creation of algorithms that realistically replicated a 

human's sound-localization abilities in a computer model.  The results of this 

analysis are consistent with findings from previous studies.     

Existing models were selected for use in this thesis.  The ADM models 

both sound propagation and human auditory detection and accounts for many of 
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the sound and human characteristics required for auditory detection.  The 

AHAAH augments the ADM by providing sound signatures for any sound 

recorded in a WAV file format.  COMBATXXI provides the computer-generated 

environment, entities, and behaviors to test the sound-localization methods 

developed in this thesis.   

The sound-localization algorithms and data from the ADM and AHAAH 

were implemented in COMBATXXI.  Scenarios were developed and data was 

analyzed to determine whether the sound-localization capabilities added to 

COMBATXXI made the entities in the simulation perform in a more realistic 

manner.  The conclusion drawn from this analysis was that the addition of the 

auditory-detection and sound-localization capabilities to COMBATXXI did, in fact, 

cause the entities to behave more lifelike than without these capabilities added.   

The final products of this thesis are a program that robustly models sound 

propagation and auditory detection, a program that extracts a sound signature for 

any sound recorded in a WAV file format, and algorithms that replicate a human's 

sound-localization abilities.  These products enhanced the realism of COMBATXXI 

and might be configured for use in any combat simulation. 

B. RECOMMENDATIONS FOR FUTURE RESEARCH 
There are many possible areas for future work.  Improvements may be 

made to the existing code, data for use with the current implementation of the 

algorithms may be collected, or new areas in which to use the models may be 

researched.    

1. Improve Code 
a. Convert Code into Java 
The ADM has not been successfully converted from the Pascal 

computer language into the Java computer language.  [Ref 13]  Java is the 

language in which COMBATXXI is written.   Translating the program into Java will 

allow one to directly calculate the probability of auditory detection given a 

distance from the sound source, thereby enhancing the stochastic modeling of 

sound localization.   A Java version of the ADM will also allow a comparison of 
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the three methods discussed in Chapter V, Section A for accuracy and efficiency.  

Additionally, the code may be modified during translation to provide more 

efficient computational performance.     

b. Verification, Validation, and Accreditation   
The ADM has not undergone official Verification, Validation, and 

Accreditation (VV&A).  The AHAAH is currently undergoing this process.  These 

programs and the localization algorithm should undergo a more robust VV&A 

than the face validation method used during this thesis.   

2. Data Collection   
a. Localization under Realistic Conditions 
Sound-localization experiments conducted under more realistic 

conditions may provide data that improve localization algorithm performance.  

Trials may be administered in the presence of background noises instead of in a 

quiet room; with sound recordings rather than a signal burst that has a pure tone 

and fixed intensity; and while the subject is wearing equipment such as a helmet, 

earplugs, or communications headset.   

b. Sound Library 
Analysis performed to identify important sound cues in a combat 

environment will contribute to the creation of a sound library.  The library should 

include recordings and information about the conditions at the time of recording 

that are compatible with the ADM and AHAAH.  The COMBATXXI code writers 

already have access to two CDs of sounds, each with more than 80 sound 

effects, to support this work.  The only drawback with these sounds is that the 

researcher would have to make and justify assumptions about the conditions at 

the time of the sounds’ recordings.   

3. New Research   
a. Distance Estimation 
Find and analyze data from sound localization experiments 

regarding distance estimation and create an algorithm that models distance 

estimation stochastically.  This algorithm could be used to enhance the 

“MoveToSound” rule in the COMBATXXI “Rule Library” by providing an additional 
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trigger to end this event with distance traveled.  The rule would instruct an entity 

to stop moving toward the sound and to continue the previous mission once the 

designated time limit expired or once the entity traveled the distance it estimated 

to the sound source.  Currently, the “MoveToSound” rule terminates only after 

the designated time has elapsed.     

b. Effects of Signal Frequency and Intensity 
Research the effects of signal frequency and intensity on sound 

localization.  Write a localization algorithm that accounts for sound intensity and 

frequency propagated at the listener's location.    

c. Sound Classification 
Conduct a study on how humans classify sounds and how humans 

react during different stages of classification.  Example:  A person who merely 

detects a sound (has heard it, but does not know what it is) may simply stop and 

orient his head in a manner to better hear the sound.  A person who classifies the 

sound (has heard it and knows what produced the sound) may instantly react 

immediately.   

d. Rule Library 
Determine how Soldiers react to different sounds and create rules 

to add to the COMBATXXI “Rule Library.”  One example is improving the 

“communications” functionality by creating a rule that limits voice orders to the 

distance that a person can be heard shouting.  The COMBATXXI developers 

already have a recording of shouting.  The researcher would have to add the 

shouting sounds to the sound library, as described above, prior to creating the 

rule.       

e. Spatial Orientation and Situational Awareness 
Research how humans assimilate information gained from the 

senses of sight and hearing to build a mental map of objects around them in 

three-dimensional space (spatial orientation) and how they use this information to 

gain situational awareness. Possible questions to answer include:  How does a 

human's mental map gained from vision and hearing differ from the actual 

situation?  How do humans make decisions from their mental map?  How do 



83 

humans prioritize actions and reactions to the objects in the mental map?   

Applications include modeling entities that differentiate sounds emanating from 

known friendly entity locations (e.g. members of their own squad) from the same 

type of sounds emanating from an enemy location and Soldiers deciding to stop 

looking at a particular target in order to turn and locate the source of a noise that 

may be more threatening.   

C. CONCLUSIONS 
Although sound-detection algorithms for combat simulations have been in 

use since the early 1990s, these algorithms used only the distance between the 

sound source and the listener to calculate sound propagation, modeled a limited 

number of sounds, and provided perfect localization information.  This thesis 

improves upon the previous work by giving the modeling and simulation 

community three tools:  (1) A robust sound propagation and auditory-detection 

program, the ADM, which accounts for many environmental, listener, and sound 

factors.  (2) A program, the AHAAH, that extracts the signature of any sound 

recording in a WAV file format.  (3) Localization algorithms that are based on 

human experiments.  These programs and algorithms were implemented in 

COMBATXXI and, through the face validation method, were found to improve the 

capabilities of the simulation by making it model human behavior more 

accurately.  The combined capabilities of the ADM, AHAAH, localization 

algorithm and COMBATXXI provide modelers and analysts the tools to explore the 

concept of "every Soldier is a sensor" and the effects of hearing on a computer-

generated combatant's ability to acquire targets, survive attacks, gather 

intelligence, and communicate with other entities, as well as to examine the use 

of acoustic sensors and non-lethal acoustic weapons on the battlefield.  
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APPENDIX A. SOUND-LOCALIZATION EXPERIMENT DATA (SAMPLE) 

Subject # Trial # Src # Src Az Src El Rsp # Rsp Az Rsp El RspTime Hit AngErr dB Level
14 1 15 134.7 0 16 147 0 2.043 0 12.3 55
14 2 16 147 0 17 159.1 0 1.572 0 12.1 55
14 3 22 -134.7 0 22 -134.7 0 1.612 1 0 55
14 4 2 -58.3 0 1 -79.4 0 1.362 0 21.1 55
14 5 11 58.3 0 10 45.3 0 0.831 0 13 55
14 6 8 21.1 0 8 21.1 0 2.013 1 0 55
14 7 19 -172.4 0 19 -172.4 0 1.872 1 0 55
14 8 5 -20.9 0 5 -20.9 0 0.881 1 0 55
14 9 7 7.6 0 7 7.6 0 0.871 1 0 55
14 10 21 -147 0 21 -147 0 1.171 1 0 55
14 11 24 -100.6 0 24 -100.6 0 1.663 1 0 55
14 12 18 172.4 0 18 172.4 0 1.642 1 0 55
14 13 13 100.6 0 13 100.6 0 1.352 1 0 55
14 14 14 121.7 0 15 134.7 0 1.272 0 13 55
14 15 19 -172.4 0 19 -172.4 0 1.592 1 0 55
14 16 23 -121.7 0 22 -134.7 0 1.322 0 13 55
14 17 8 21.1 0 8 21.1 0 1.011 1 0 55
14 18 20 -159.1 0 20 -159.1 0 1.372 1 0 55
14 19 3 -45.3 0 3 -45.3 0 1.472 1 0 55
14 20 12 79.4 0 12 79.4 0 0.881 1 0 55
14 21 24 -100.6 0 24 -100.6 0 2.353 1 0 55
14 22 23 -121.7 0 22 -134.7 0 1.272 0 13 55
14 23 17 159.1 0 17 159.1 0 1.622 1 0 55
14 24 20 -159.1 0 20 -159.1 0 1.632 1 0 55
14 25 1 -79.4 0 1 -79.4 0 1.031 1 0 55
14 26 16 147 0 17 159.1 0 1.212 0 12.1 55
14 27 1 -79.4 0 1 -79.4 0 0.911 1 0 55
14 28 18 172.4 0 18 172.4 0 1.553 1 0 55
14 29 4 -32 0 4 -32 0 0.661 1 0 55
14 30 13 100.6 0 13 100.6 0 0.761 1 0 55
14 31 4 -32 0 4 -32 0 0.931 1 0 55
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APPENDIX B. COMBATXXI EXPERIMENT DATA 

 

Scenario A Scenario B
NO Sound SEM SEP SNM SNP NO Sound SEM SEP SNM SNP

9 1 1 0 1 10 1 1 1 1
10 2 2 1 2 12 1 2 3 4
8 0 0 0 2 13 1 1 1 1
10 1 1 2 2 12 0 0 0 0
11 2 1 1 1 12 0 0 0 0
10 2 0 0 0 8 0 4 1 1
11 1 2 0 2 12 1 3 0 0
10 1 2 0 0 12 0 0 0 0
10 2 4 1 0 12 2 1 1 0
10 0 0 0 1 12 3 3 4 5
10 1 1 2 3 12 3 3 1 1
10 3 2 0 3 12 0 2 0 0
10 1 2 1 1 11 0 0 1 5
10 2 0 0 0 13 0 1 0 0
11 0 3 0 2 12 2 0 2 0
10 0 2 1 0 4 1 1 1 0
10 5 1 3 1 12 1 1 0 1
11 5 0 1 0 5 3 2 2 2
10 0 1 1 1 8 0 0 0 0
10 1 1 0 3 12 3 0 0 0
11 1 2 2 2 12 0 4 2 3
10 2 1 2 0 12 1 1 0 0
10 3 2 2 2 12 1 1 1 1
7 4 2 1 0 12 4 4 3 3
4 1 3 3 1 12 0 0 0 1
9 0 3 3 1 12 2 1 0 0
10 0 1 0 1 10 1 3 1 1
11 2 3 0 1 12 0 2 1 1
9 1 4 0 0 12 1 1 1 1
10 1 1 0 0 12 4 4 1 1
10 0 3 3 1 12 3 3 2 2
10 0 1 3 1 5 2 1 1 4
9 0 1 1 1 10 1 1 1 0
10 0 0 1 1 12 0 0 1 1
11 2 2 3 2 12 3 1 0 0
10 1 1 1 0 12 1 2 3 1
10 2 1 1 1 12 1 1 1 1
8 1 2 1 0 12 0 0 1 4
7 2 3 2 0 12 0 0 0 0
9 2 4 2 4 12 1 1 1 1
11 4 0 0 2 12 3 6 7 4
11 0 6 4 0 12 0 0 0 0
9 0 2 2 0 5 1 1 0 0
10 0 1 1 0 8 3 3 0 2
11 2 3 1 4 13 2 2 1 0
10 2 2 0 4 8 3 2 0 0
10 0 1 2 1 12 0 0 0 0
11 2 1 0 0 12 0 3 0 4
8 2 1 0 3 12 1 1 6 0
7 0 1 0 5 12 2 2 0 0
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9 1 1 3 3 10 2 4 1 1
10 0 1 0 1 12 2 4 0 0
10 2 2 1 2 12 0 0 2 1
9 0 2 0 0 8 0 0 1 1
10 4 1 1 1 12 1 1 0 0
9 1 2 1 1 12 1 0 0 1
11 0 2 1 3 12 0 0 1 0
11 0 1 2 2 12 2 11 3 2
10 1 3 1 2 12 3 1 0 0
10 3 4 1 0 11 0 0 3 3
10 0 6 1 3 13 0 0 0 0
10 1 3 1 1 12 1 0 0 0
11 1 2 0 1 12 0 1 1 1
8 1 0 0 1 12 2 2 2 1
8 2 1 1 1 6 0 0 0 0
9 2 1 1 3 12 2 6 2 1
10 1 1 1 1 12 0 0 1 1
9 0 0 1 3 12 2 3 0 0
11 1 1 1 2 13 6 4 0 0
9 2 2 1 1 1 7 6 2 2
11 2 1 0 0 12 1 7 0 0
9 2 2 1 2 12 0 0 0 6
10 0 2 1 0 12 0 0 0 0
11 1 4 2 1 9 1 1 2 1
9 0 1 0 1 1 0 0 0 0
11 2 3 1 0 8 0 0 1 0
9 2 3 1 0 9 1 1 1 3
10 9 1 0 2 12 0 6 1 1
9 0 1 1 3 12 1 1 3 3
10 3 0 1 0 12 3 3 1 1
9 2 2 2 5 12 1 1 3 3
12 3 2 2 1 12 1 1 1 1
9 0 1 1 4 12 2 1 0 0
10 3 1 1 0 12 5 3 1 1
10 1 1 1 2 11 5 4 1 0
11 2 0 2 1 12 2 2 1 2
10 2 2 1 1 7 1 1 0 2
8 2 1 1 1 12 0 0 0 3
10 0 3 3 2 12 0 0 0 0
11 1 0 1 0 12 1 0 0 1
6 0 1 2 2 12 0 0 0 0
10 0 1 1 0 5 0 1 1 3
10 1 0 0 4 12 0 0 0 0
10 2 1 2 3 6 0 0 0 0
7 3 1 2 0 12 1 1 0 1
11 0 1 0 1 12 1 1 1 0
8 1 1 1 1 12 0 0 0 0
10 1 0 2 1 12 3 5 6 4
7 2 1 0 2 12 1 1 1 1
10 3 1 1 0 12 0 0 0 0
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